

PRIMARY 5 MATHEMATICS

Sharing with Parents

9 January 2026

Curriculum Materials for Students

- Primary Mathematics Textbooks 5A & 5B
- Primary Mathematics Practice Books 5A & 5B
- School-based Worksheets

MATH TOPICS

SEMESTER 1

Term 1

Chapter 1 – Numbers to 10 million

Chapter 2 – Four Operations of
Whole Numbers

Chapter 3 – Fraction and Division

Chapter 4 – Four Operations of
Fractions

Term 2

Chapter 5 – Area of Triangles

Chapter 6 – Volume

Chapter 7 – Decimals (5B TB)

MATH TOPICS

SEMESTER 2

Term 3
Chapter 8 – Rate
Chapter 9 – Percentage
Chapter 10 – Angles
Chapter 11 – Properties of Triangles

Term 4
Chapter 12 – Properties of Parallelograms, Rhombus and Trapezium

PROBLEM SOLVING SKILLS

Note: The examples of problem-solving skills presented in this deck are intended for reference purposes only. They represent some approaches used in Primary 5 but are not exhaustive.

1. 'Before and After' Problem Sums in Whole Numbers

Example (a)

Selene had 4 times as much money as Cathy. After Selene spent \$13 and Cathy received \$5, they had the same amount money. How much money did Selene have at first?

Example (b)

Selene and Cathy had an equal amount of money. After Selene spent \$5 and Cathy spent \$9, Selene had twice as much money as Cathy. How much money did Selene have at first?

Example (c)

Selene had \$15 and Cathy had \$7. After they both spent an equal amount of money, Selene had twice as much money as Cathy. How much money did Cathy have in the end?

PROBLEM SOLVING SKILLS

Note: The examples of problem-solving skills presented in this deck are intended for reference purposes only. They represent some approaches used in Primary 5 but are not exhaustive.

2. Guess and Check (or Assumption method)

Example

Mr Tan sold big durians at \$12 each and small durians \$7 each.

He sold 150 durians altogether and collected \$1310 in total.

How many small durians did he sell?

PROBLEM SOLVING SKILLS

Note: The examples of problem-solving skills presented in this deck are intended for reference purposes only. They represent some approaches used in Primary 5 but are not exhaustive.

3. Part of a Whole vs Part of a Remainder in Fractions

Example (a)

Kent had some money. He spent $\frac{3}{7}$ of his money on a present and $\frac{1}{4}$ of his money on a meal. In the end, he had \$9 left. How much money did Kent have at first?

Example (b)

Kent had some money. He spent $\frac{3}{7}$ of his money on a present and $\frac{1}{4}$ of his remaining money on a meal. In the end, he had \$9 left. How much money did Kent have at first?

EXAMPLES OF PROBLEM SOLVING STRATEGIES

Note: The strategies presented here are intended for reference purposes only. They represent some approaches used in Primary 5 but are not exhaustive.

- Draw a model or diagram
- Make a systematic list / Tabulation
- Before / After concept
- Look for a pattern
- Guess & Check
- Work backwards
- Supposition method

Primary 5 Assessments

Term 1	Term 2	Term 3	Term 4
Revision Paper	WA1	WA2	EOY exam
Non-weighted	15%	15%	70%

End-of-Year Exam Format

Paper	Booklet	Item Type	No. of questions	No. of marks per question	Total Marks	Duration
1 Calc. NOT allowed	A	Multiple-choice Questions	10	1	26m	1 h 10 min
			8	2		
	B	Short –answer Questions	12	2	24m	
2 Calc. allowed		Short-answer Questions	5	2	50m	1 h 20 min
		Long-answer/ Structured Questions	10	3, 4, 5		
Total			45		100m	2 h 30 min

Both papers are scheduled on the same day with a short break in between the two papers.

Paper 1 Booklets A & B:

Use of calculator is NOT ALLOWED.

Booklet A: 18 Multiple Choice Questions

- Indicate answer on question paper to facilitate checking against shaded answer in OAS.
- Strongly encouraged to shade the oval in the OAS after completing each question.

Booklet B: 12 Short Answer Questions

- Show workings clearly and write the correct answers in the answer blanks provided
- Do not erase the workings as method marks **may** be awarded for the correct workings shown, even if the answer is wrong.

Paper 2:

Use of calculator is allowed.

5 Short Answer Questions (2 marks each)

- Show workings clearly and write the correct answers in the answer blanks provided
- Do not erase the workings as method marks **may** be awarded for the **correct workings** shown, even if the answer is wrong.

10 Problem Sums (3, 4 or 5 marks each)

- Show full solution and workings clearly, so that **method marks** and answer marks can be awarded accordingly.
- **Show all steps taken** as method marks may be awarded, even if the answer is wrong.

CALCULATORS

- Only SEAB-approved for use calculators are allowed in the examination rooms.
- For the list of approved calculators for use in school-based examinations and PSLE, please refer to the SEAB website (<https://www.seab.gov.sg/psle>)

PRESENTATION OF SOLUTIONS

- **Consistency** in units of measure

$$3 \text{ kg} \times 4 = 12 \text{ kg}$$

- **Use equal signs** correctly

$$\frac{1}{2} \text{ of total amount} = \$45 \text{ } \text{😊}$$

$$\underline{\frac{1}{2} = \$45} \text{ } \text{😊}$$

- Show the method of solution (working steps) clearly
- Standard units of measurement should accompany the final answers.

PRESENTATION OF SOLUTIONS

25% of the boys in a hall is equal to 16% of the girls. There are 72 more girls than boys. How many children are there in the hall?

$$36\% \text{ of girls} = 72$$

$$\begin{aligned}64\% \text{ of girls} &= (72 \div 36) \times 64 \\&= 128\end{aligned}$$

$$128 \times 2 + 72 = 328$$

Ans: 328

Wrong Mathematical Statement/Presentation

$$36\% = 72$$

$$64\% = 128$$

Partnership with the school

Assignments from school

- Ensure student has a conducive working environment.
- Insist that your child sticks to the given/recommended time frame.
- Practice good time management.

To support your child

- Praise, encourage and motivate your child.
- Strategize – focus on improving areas of weaknesses.
- Practice good time management.
- **Ensure that your child does correction for mistakes made in his/her work.**
- **Exposure to Non-routine problems** – ability to apply the concepts taught in unfamiliar questions/situations

More math...in other forms

- Math Games
- Math Literature
- Daily life
- Logic puzzles
- **Manage stress** – watch for change in behaviour in your child.

Mathematics
is not about numbers,
equations,
computations, or
algorithms. It is about
understanding.

- William Paul Thurston

© Elementary Excellence 2014